

Mapping forest intactness / degradation: the map analysis of pilot sites in Andasibe, Ranomafana and Manombo

Dmitry Aksenov Igor Glushkov

www.transparentworld.ru

Rumyantsevo Business Park, bld.1, entrance 8, 5th floor, room 531a Kiev Highway 1, 142784; Moscow, Russia Tel./Fax: +7 (495) 739-738-5, E-mail: info@transparentworld.ru

Why to measure forest intactness / degradation?

- The forest biodiversity is sensitive to human influence and depends on the level of the forest transformation
- So, the intactness of forest is important for decision-making on conservation priorities
- Forest transformation/degradation map is required for better understanding the transformation reasons and making decisions for more sustainable landuse

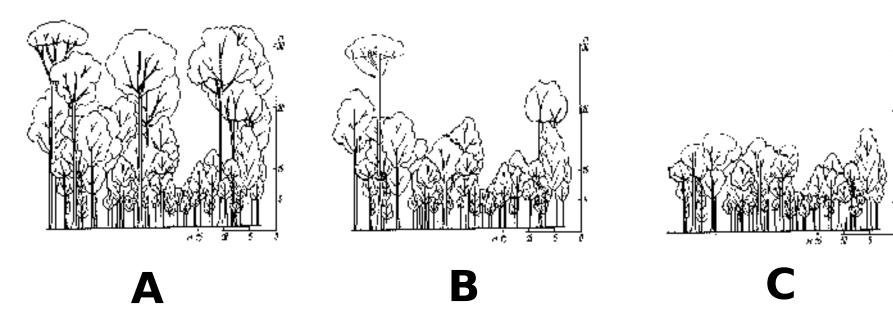
How to measure the level of forest intactness / degradation?

- Such a measuring is a technically challenging task as the "intactness" is not directly visible in satellite images and other spatial datasets
- The most of existing maps do not take the degradation level too much into account – mapping primarily forest cover changes or general, climatedependent forest types

Assumptions

- 1. Forest degradation influences the forest canopy structure
- 2. More degraded forests usually have more <u>simple canopy structure</u> – while more intact forests have more <u>complex canopy</u> <u>structure</u> formed by trees of diverse sizes (at least so for humid evergreen tropical forests, also proven for a number of types of boreal and temperate forests of Eurasia)
- This structure reflected in satellite images – texture characteristics and a spectral response

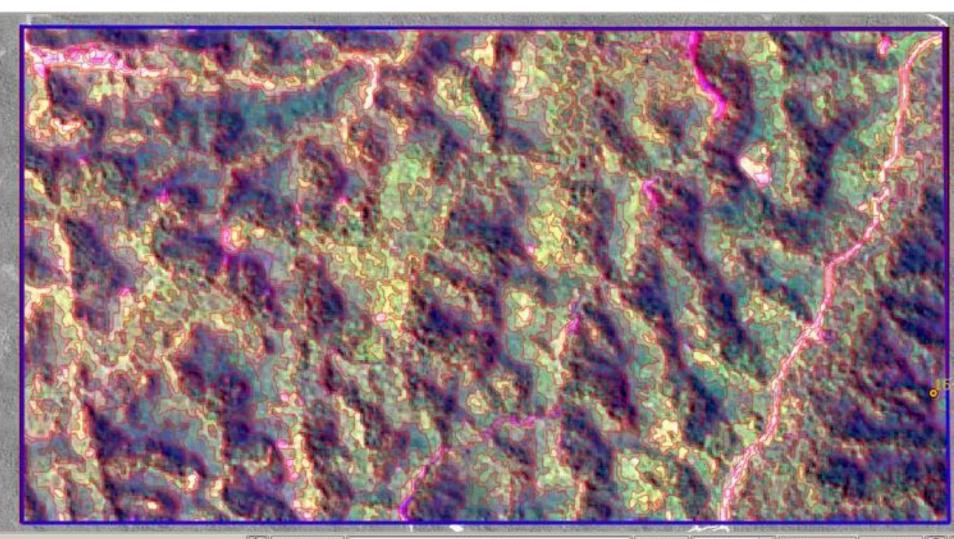
Assumptions


- Intact / old-growth forests usually have the more than 1 layer of closed canopy (Multilayer – ML)
- Degraded / secondary forests have a single layer of closed canopy (Single-layer – SL)
- Intact forests may have a simple canopy structure (single layer) only in specific habitats or landscape positions (SL "on top of ridges")

Simple forest canopy structure classification

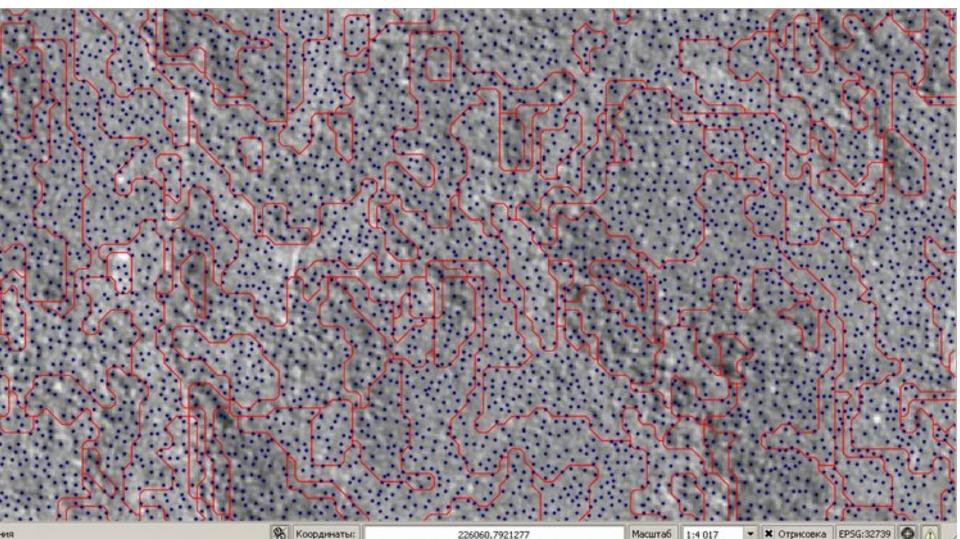
A. Multi-layer (ML)

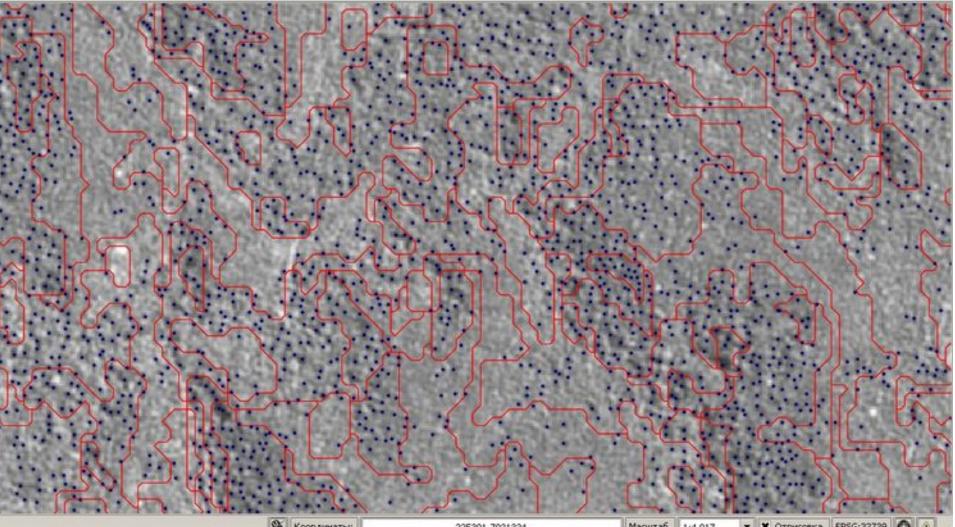
B. Single layer with big tress (SL BT)


C. Single layer (SL)

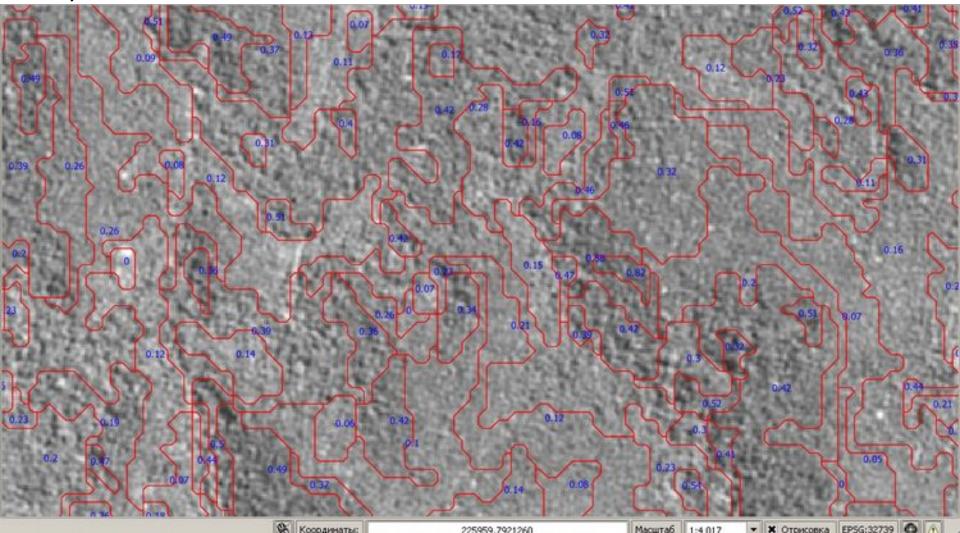
How to measure it? The idea

- Using SPOT-5 (also SPOT-6/7 in the future) panchromatic channel (detailed enough to detect single trees crowns and canopy irregularities)
- Mapping tree crown shadows marking irregularities in the canopy (a kind of "reversed" single trees crown mapping method)
- Calculating density of shadows and classifying forest stands polygons on this base


Segmentation by SPOT spectral channels (spatial resolution – 10 m; min. area – 50 pixels)



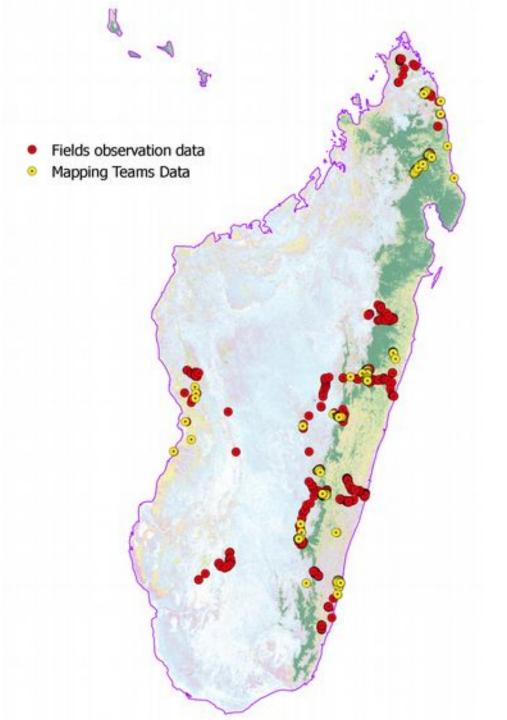
Calculating local minimum reflections pixels in SPOT panchromatic channel (resolution – 2.5 m; window – 5x5 pixels)



Selecting canopy shadows of different size – local minimum pixels

with the reflection below 60-80 DN

Calculate density of shadow – counting the pixels for each polygon/area, (shadow pixels number / area of a polygons * 100)



Maps of forest structure complexity based on density of shadows

The classification based on the canopy complexity measurement

- Shadows density below 0.1 Non-forests
- Shadows density 0.1-0.2 Single layer (SL) forests
- Shadows density 0.2-0.3 Single layer forests with big tress (SL BT)
- Shadows density over 0.3 Multi-layer (ML) forests

Field surveys of various forests in eastern Madagascar by Malagasy colleagues from local associations and by joint Malagasy-FANC-TW teams

The field observations proved that the canopy complexity alone does not reflect the whole diversity of human-made and natural disturbances.

Both, Malagasy and international experts, concluded that canopy coverage is another important indicator.

Multi-layer forest with closed canopy, Mantadia National Park

Multi-layer forests with canopy gaps, Andringitra National Park

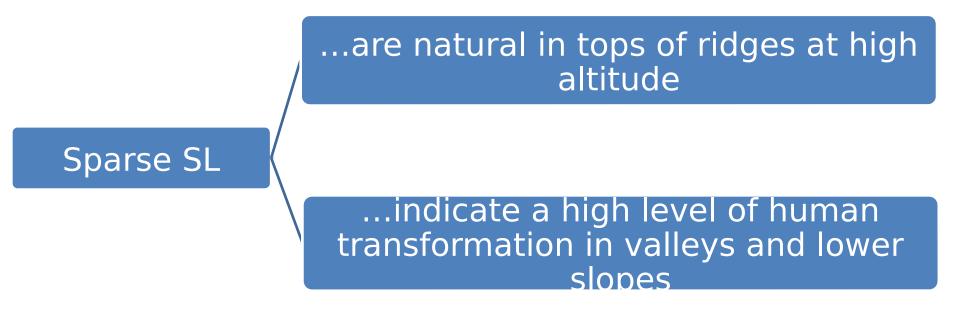
Multi-layer forest with large canopy gaps, Andringitra National Park

Extending the classification – taking canopy coverage into account

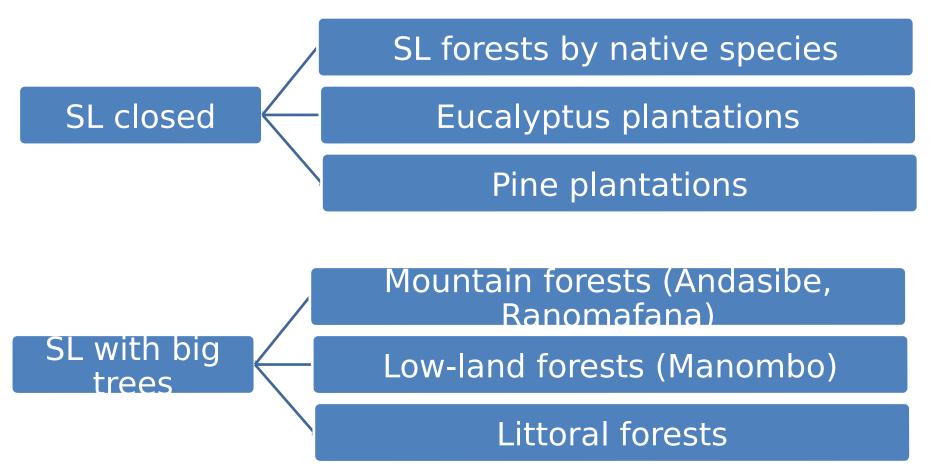
(percentages are indicative only and require field measurements for verification -

the coverage has been visually identified with high-resolution images)

- High coverage canopy (over 70% coverage ??)
- Medium coverage canopy (40-70% ??)
- Low coverage canopy (20-40% ??)
- Very low coverage canopy (below 20% ?? – non-forest)


Forest degradation classes scheme

Canopy coverage				
High	Bush lands & woodlands	SL closed	 (not found yet)	ML closed
Medium	Transition from			ML with gaps
Low	grasslands to bush lands	SL sparse	SL with big trees	ML with large gaps
Very low	Grasslands & bare ground			
	Non-forest	Single layer	SL with big trees	Multilayer
		Canopy struct	ure complexit	У


What real forests are in these classes?

_				
Canopy coverage	Non-forest	Single layer	SL with big trees	Multilayer
High	Bush lands Invasive species thickets Native pioneer species thickets	Secondary forests with native species Closed eucalyptus & pine plantations		Closed intact forests on slopes
Medium	Early stages of forest restoration Mosaic of fields, grazing areas	Secondary forests with serious recent disturbance	Intact sparse forests on tops of ridges	Intact forest in lower slopes & river valleys Some disturbed forests
Low	and introduced species Ravenala in mixture with other trees & bushes	Intact sparse forests at high altitude, usually on top of ridges	Slightly disturbed forests on slopes and valleys	Intact forests in valleys / affected by cyclones Disturbed with zebu grazing / logging
Very low	Natural rocks After tavy areas Degraded lands			

Other characteristics also should be taken into account - like the altitude and the location in the relief

SPOT spectral channels could also help separating native trees forests from introduced tree species planted, as well as various forest types

The final classification scheme

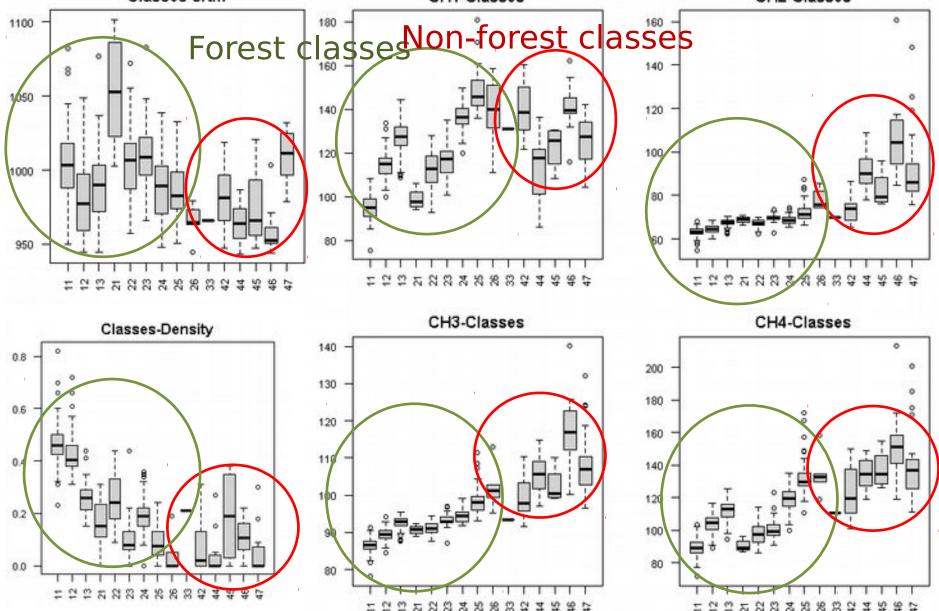
Canopy coverage	Non-forest	Single layer	SL with big trees	Multilayer
High	 4.1a. Savoka & Savoka with single trees 4.1b. Pure bamboo thickets - ?? 4.1c. Pure ravenala thickets - ?? 4.1d. Filippia thickets - ?? 	3.1a. SL closed - mountain forests 3.1b. SL closed - lowland forests 3.1c. SL closed - littoral forests 3.1d Eucalyptus plantations 3.1e Pine plantations	 (not found yet)	1.1. ML closed
Medium			2.1a. SL with	
Low	4.2. Mosaic of ramarasana, crops,	3.2a. SL sparse - high altitude forests	big trees - top of ridges forests 2.1b. SL with	1.2. ML with gaps
	savoka & woodlands	3.2b. SL sparse - slopes & valleys	big trees - lowland forests 2.1c. SL with big trees - littoral forests	1.3. ML with large gaps
Very low	4.3a. Bare ground 4.3b. Ramarasana 4.3c. Roranga			

The final list of classes

	_					
Clas s №	Class Name	Canop y compl exity	Canop y densit y	Spectral features 4-1-3 channels	Location in the landsca pe	Real ecosystems included
1.1	ML closed	> 0.3	high	Dark- green	Slope	Intact humid forest
1.2	ML with gaps	> 0.3	mediu m	Dark- green to bright- yellow- green	Valley, Lower slope	Intact humid forest
1.3	ML with large gaps	> 0.3	low	Bright- yellow- green	Valley	Humid forest with cyclone dynamic or slightly selectively logged
2.1a	SL with BT on tops	0.2-0.3	med low	Blue- green to grey -green	Top, upper slope	Intact forest on top of the ridge, could be selectively logged

Clas s №	Class Name	Cano py com plexi ty	Canopy density	Spectral features 4-1-3 channels	Location in the landscape	Real ecosystems included
2.1b	SL with BT lowland	0.2- 0.3	medlow	Bright-light- green	Lower slope, valley	Most intact forest in lowlands
2.1c	SL with BT littoral	0.2- 0.3	medlow	Blue-green	Flat,valley	Most intact forest in lowlands
3.1a	SL closed mountai n	0.1- 0.2	high	Blue-green to grey	all	Heavy selectively logged or secondary forest after "tavy" in mountain region
3.1b	SL closed lowland	0.1- 0.2	high	Bright- green	all	Secondary forest in lowlands with Ravenala

	· · · · · · · · · · · · · · · · · · ·					
Clas s №	Class Name	Canop y compl exity	Canop y densit y	Spectral features 4-1-3 channels	Locatio n in the landsc ape	Real ecosystems included
3.1c	SL closed littoral	0.1-0.2	high	Blue- green	Flat,vall ey	Secondary forest
3.1d	Eucalyptus closed	0.1-0.2	high	Acid- green	all	Plantation
3.1e	Pine closed	0.1-0.2	high	Green to red-grey	Slope,to p	Plantation
3.1f	Eucalyptus,Pin e mixed with native	0.2-0.3	high	Dark- green to grey	all	Old plantations or forest on border with native
3.1g	Fruits plantation, gardens near villages, Ravenala in lowlands??	0.1-0.2	Mediu m,low	Bright yellow- green	flat	Plantation near settlements, Ravenala forests??


Clas s №	Class Name	Canop y compl exity	Canop y densit y	Spectral features	Locati on in the lansca pe	Real ecosystems included
3.2a	SL spare high altitude	0.1-0.2	med low	Grey – green with purple colors	tops, high altitud e	Intact or cyclone affected forests on high altitude tops of ridges
3.2b	SL spare on slopes/valleys	0.1-0.2	med low	Bright- yellow with bright green	slopes, valleys	Selectively logged or secondary valley forests
4.1a	Savoka	< 0.1	high	Bright yellow	all	Shrubland after disturbances
4.3a	Bare ground, fields	< 0.1	very low	Bright red to white	Slope,t op	Tavy, rocks, crops
4.3b	Ramarasana	< 0.1	very low	Blue-white to bright light green	all	grasslands, shrubs

Class N⁰	Class Name	Canopy comple xity	Canop y densit y	Spectral features	Locatio n in the lanscap e	Real ecosystem s included
4.3c	Roranga	< 0.1	very low	Dark red	all	long-term grassland
4.1b	Bamboo thickets	< 0.1	high	Not selected yet	-	-
4.1c	Ravenala thickets	< 0.1	high	Not selected yet	-	-
4.1d	Filippia thickets	< 0.1	high	Not selected yet	-	-
4.2	Mosaic of crops, ramarasana, savoka	< 0.1	med low	Grey to red	all	

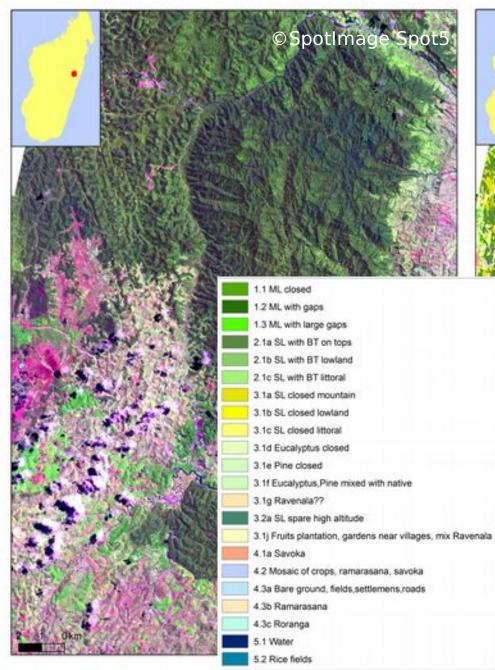
Employing the Random Forests algorithm for classifying forest stands by all their parameters measured by DEM and SPOT images (using GRASS; R-randomForest; QGIS)

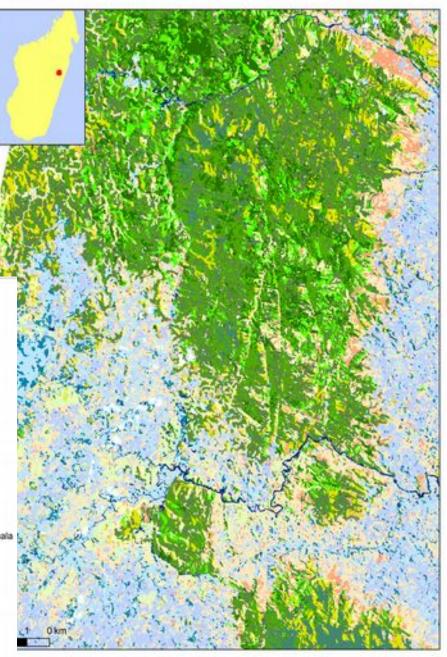
STEP 1	Segmentation of SPOT images by spectral channels, 10m resolution (GRASS GIS module i.segment with the following parameters: min area - 10 pixels, similarity threshold = 0.3 for spectral channels).	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
STEP 2	Adding main statistical parameters from spectral image channels and DEM data to each polygon: mean, standard deviation, minimum, maximum, range to each polygon; as well as canopy complexity data.	SRTM
STEP 3	Creating educational set of data, using high- resolution image and field observation data as needed.	
STEP 4	Creating model using the advanced decision trees algorithm - R:randomForest. Estimate model of classification, data statistics for each class, inner model quality and errors.	SPOT 5 -2.5м
STEP 5	Applying model to whole set of data and export result map (QGIS).	SPOT 5 -10м

Analyzing all data together: importance of DEM, spectral channels and complexity data

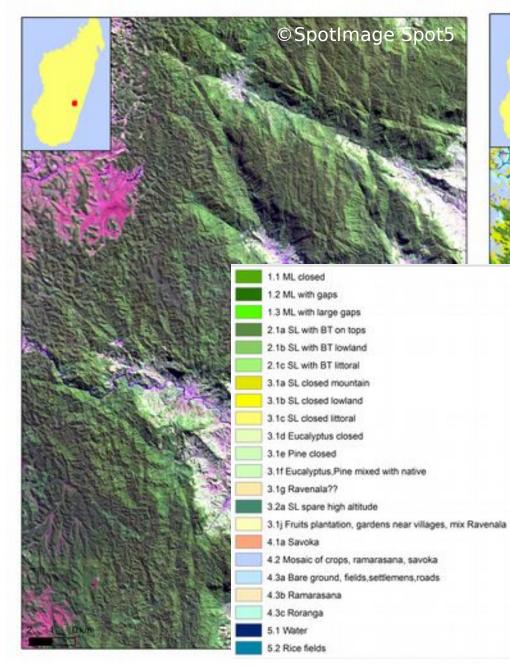
Example of model quality (A:NDASIBE) randomForest(formula = as.factor(test\$CLASSID) ~ ., data = test

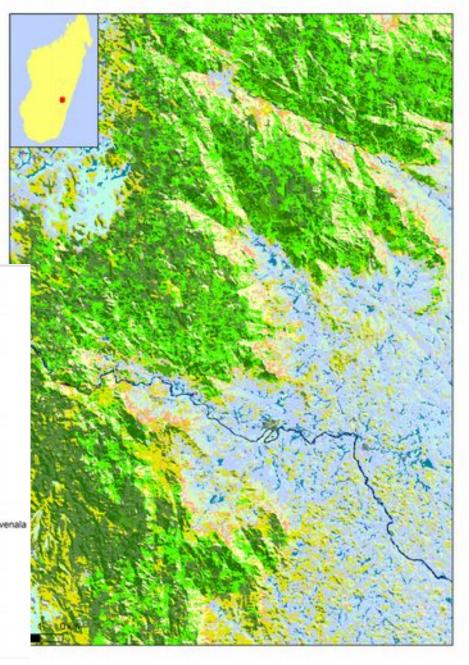
randomForest(formula = as.factor(test\$CLASSID) ~ ., data = test Type of random forest: classification Number of trees: 10000 No. of variables tried at each split: 10

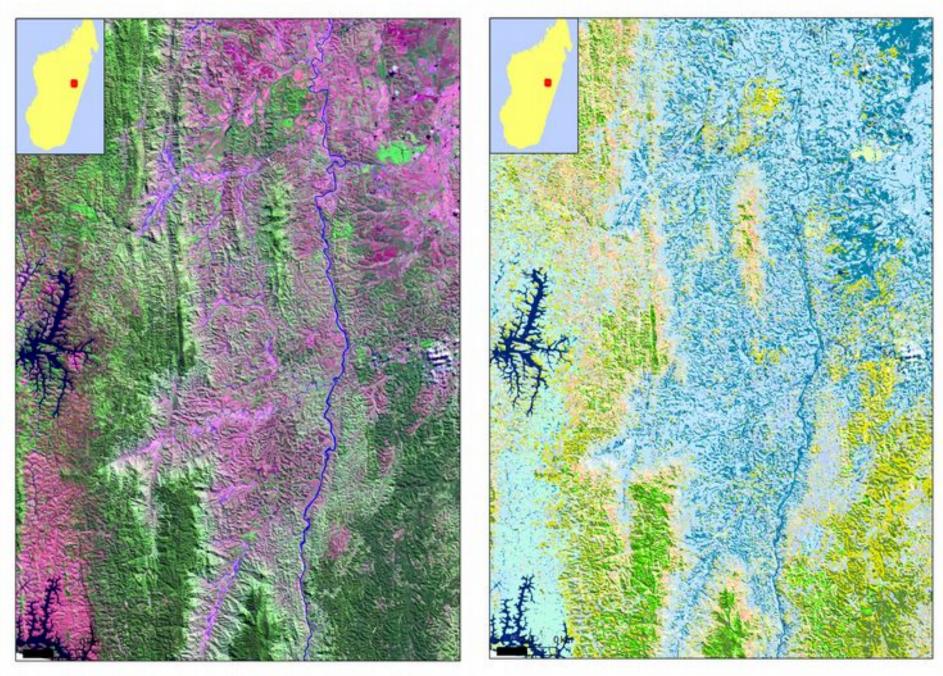

OOB estimate of error rate: 29.02%

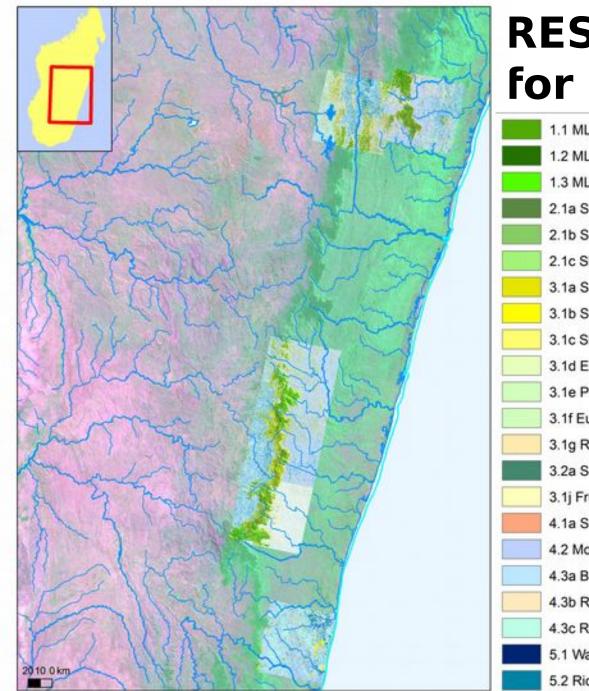

Confusion matrix:

	11	12	13	21	22	23	24	25	26	33	42	44	45	46	47	class.error
11	73	7	0	0	4	0	0	0	0	0	0	0	0	0	0	0.13095238
12	5	73	4	0	2	0	0	0	0	0	0	0	0	0	0	0.13095238
13	0	7	46	0	7	2	14	0	0	0	Ο	0	0	0	0	0.39473684
21	0	0	0	3	4	1	0	0	0	0	0	0	0	0	0	0.62500000
22	3	5	7	0	47	8	Ο	0	0	0	Ο	0	0	0	0	0.32857143
23	1	0	1	0	7	35	2	0	0	0	0	0	0	0	0	0.23913043
24	0	0	13	0	0	1	50	13	0	0	0	0	0	0	0	0.35064935
25	0	0	0	0	0	0	11	35	1	0	2	0	0	1	0	0.30000000
26	0	0	0	0	0	1	0	З	0	0	1	1	0	0	0	1.00000000
33	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	1.00000000
42	0	0	2	0	0	1	7	8	0	0	1	0	0	0	0	0.94736842
44	0	0	0	0	0	0	0	0	0	0	0	11	0	0	1	0.08333333
45	0	1	0	0	0	0	1	0	0	0	0	2	0	0	0	1.00000000
46	0	0	0	0	0	0	0	0	0	0	0	0	0	13	1	0.07142857
47	0	0	0	0	0	1	0	1	0	0	0	0	0	0	19	0.09523810


>


RESULTS: Mantadia




RESULTS: Ranomafana

RESULTS: Andasibe-West

RESULTS: Maps for pilot areas

1.1 ML closed
1.2 ML with gaps
1.3 ML with large gaps
2.1a SL with BT on tops
2.1b SL with BT lowland
2.1c SL with BT littoral
3.1a SL closed mountain
3.1b SL closed lowland
3.1c SL closed littoral
3.1d Eucalyptus closed
3.1e Pine closed
3.1f Eucalyptus,Pine mixed with native
3.1g Ravenala??
3.2a SL spare high altitude
3.1j Fruits plantation, gardens near villages, mix Ravenala
4.1a Savoka
4.2 Mosaic of crops, ramarasana, savoka
4.3a Bare ground, fields, settlemens, roads
4.3b Ramarasana
4.3c Roranga
5.1 Water
5.2 Rice fields

Further plans

- Completing the forest intactness / transformation map for the whole moist forests of Madagascar
- Field verification and adjusting the classes accordingly
- Expanding for semi-dry and dry forests
- Developing the forest degradation monitoring system based on the maps and measuring methods (by local people)
- Cooperation with the Global Forest Watch (initiative of the World Resources Institute, DC, USA) starting the project in Madagascar next year (<u>www.globalforestwatch.org</u>)

Transparent World

www.transparentworld.ru

Rumyantsevo Business Park, bld.1, entrance 8, 5th floor, room 531a Kiev Highway 1, 142784, Moscow, Russia Tel./Fax: +7 (495) 739-738-5, E-mail: info@transparentworld.ru

Misaotra!

Dmitry Aksenov picea2k@gmail.com

Igor Glushkov glushkov2igor@gmail.com